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" Abstract

qI
An effective numerical method for solving boundary value problems for the Landau

Fokker-Planck equation is developed and applied to calculating the electron velocity

distribution function in model solar transition regions. Numerical results

illustrating thd speed, pitch angle and spatial dependence of the distribution

function are presented. From these it is concluded that the widely-invoked assomp-

tion that in weakly inhomogeneous collisional plasma the angle-averaged distribution

function remains close to local-Maxwellian distribution is incorrect. Instead,

the distribution function forms an anisotropic, high velocity tail in the lower

temperature regions due to the diffusion of fast electrons anti-parallel to the

temperature gradient.( Roughly speaking this effect is of quantitative signficance

for spectroscopic work and heat conduction provided X (d'T k 1 0 - 3 , where(kTL 2/ ) VAX';

X MT) 2ire 44juk is an effective mean free path for thermal electrons.

-It is shown that as a repu}t of there being an excess of fast electrons in the

low transition region (T 1 3 x L05 K, say), inelastic electron-ion collision rates
A A

are significantly enhanced over the Maxwellian values. Attendant effects on the

ionization balance of a typical metal (magnesium) are shown to be significant.

Implications of the breakdown of the local-Maxwellian approximation for several

outstanding questions related to the solar transition region are discussed, including:

energy balance in low transition region and upper chromosphere, the helium resonance

line spectrum, the Schmahl-Orrall observation of continuum absorption by neutral

ai hydrogen, and the origin of the 20,000 K temperature plateau.A

Subject headings: plasmae - Sun: atmoephze.e -

o'Sun: chromosphere atomic proe .
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I. Introduction

This is the first in a projected series of papers on the topic of how gradien

a in density and temperature affect the electron velocity distribution function

(EVDF) in collisional plasma. For reasons to be discussed, emphasis through-

out the series will be placed on physical conditions thought to exist in the

Sun's chromosphere-corona transition region and upper chromosphere (hereafter

* . referred to simply as the transition region; TR) and on assessing any

implications of the kinetic theory to be developed for the spectroscopic

diagnosis and energy balance of these regions. Results of more general

interest will also be presented, however.

Knowledge of the form assumed by the EVDF in a plasma under weakly

inhomogeneous conditions - those in which the effective mean free path of

thermal electrons X (X - (kT) 2 /7e nlnA in fully ionized hydrogen; see below)

is everywhere small relative to gradient scale lengths - is an essential

element in many astrophysical analyses. Such knowledge is required, for

example, in order to determine electron-ion collisional excitation and

ionization rates and the plasma thermal and electrical conductivities.

Although the Sun's TR is known from EUV observations to be the site of

unusually large temperature and density gradients, it nonetheless qualifies

as a weakly inhomogeneous medium under the definition given above. This

point is illustrated by Table 1 showing portion of an empirically derived,

spatially averaged, quiet-sun TR model published by Dupree (1972.) Note

that a i < 5 x 10-2. Consequently, it is generally thought that
dz

throughout the Sun's TI, as in any quasi-stationary, weakly inhomogeneous

V plasma, the EVDF can be adequately approximated by an expression of the

form

f v, z) f (v; n, T) 1+,.(Z ) (1)

;..
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where I have considered the simplest case of a horizontally stratified

(7T !L &), isobaric plasma at rest with a vertical (or zero) magnetic
dz

field. Here f* is a local-Maxwellian distribution with number density n,: 4 v.a

and temperature T, U - . and D (x) is obtained by applying the

%. Chapman-Enskog formalism to a particular kinetic equation, as done, for

example, by Spitzer and Hirm (1953) for the Fokker-Planck equation.

Equation (1) has two important implications: first the angle-averaged

0 1
distribution fo = 1/ fdu, remains equal to a local Maxwellian distribution,

and second, the electron heat flux, q B-27 m .f'jdU v' f (U, v, z) dv, is
Ir 0

proportional to T 5 and is only logarithmically dependent on density. These
dz

conclusions underlie many solar and astrophysical analyses, including ionization

equilibrium and radiative loss calculations, spectroscopic diagnostic

procedures and energy balance arguments. It is my aim in this and later

papers in this series to show that they are, in fact, invalid in the solar

transition region - and, by implication, under similar conditions in other

inhomogeneous media.

The difficulty is that equation (1) is not a uniformly valid approxima-

tion (Shoub 1976, 1981); it fails for electron velocities v > v, where v( /'v c  c c

is defined by the relation a (ih) = 1. The reason for this failure is

that according to Landauts (1936; 1949) Fokker-Planck equation (the same

equation was later derived using different arguments by Spitzer

and Mirm (1953) and later still by Rosenbluth,

MacDonald and Judd; RMJ 1957), the effective speed-dependent mean free path

of an electron in a fully ionized gas increases as the fourth power of its

velocity, for velocities greater than thermal. As defined above, v is the

c

5.*-
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velocity at which an electron's mfp equals the local temperature-gradient
o,

;1 scale length. The ratio vc /vth is l13ted in Table 1; note that it fallsnth
well-within the range relevant to calculating inelastic collision rates.

Equation (1) fails for v>v_ because its derivation is based on the assumed

existence of "normal", or, in present context, spatially local solutions to

a kinetic equation of the form

f (v, z) - f (v; n(z), T(z), Vn(z), VT, ... )

where the ellipsis denotes higher order gradients. It seems clear, at least

intuitively, that such a local solution cannot exist at velocities for which

electrons can traverse one or more scale heights before therualizing. This

can be seen from a mathematical standpoint as follows.

Consider the dimensionless, high-velocity form of the RMJ Fokker-Planck

equation in the Maxwellian-field-particle approximation (hereafter MFPA),

namely

ST. _21 +, .2 1 + 1. )3 + lav i-,,2ZM
A 3~~~IT 2 'at~; at'~~li a 2

where
27r v 2kez
,-.2 f Vtf; v v 2 (z)Z

V t th mk ( z)
T dz ; X(z) 0

f -' ire'n 0 (z) ZnA

dtn(T0) din(T )
dz 

dT

U Equation (2) follows from the full Fokker-Planck equation upon evaluating the

Rosenbluth potentials (see Eqn. 9) using a local-Maxwellian distribution for

electrons, a delta function distribution at zero velocity for protons and

w then neglecting terms in the resulting coefficients which are unimportant
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at large velocities. A thermal electric field term has also been omitted

from the left side of (2); it is unimportant relative to gradient-related

terms at large velocities (see Eqn. 41). The quantities T0 and n0 are

reference variables which for the moment may be identified with the

electron temperature and density.. Note that X, referred to above as the

effective mean free path of thermal electrons, is simply the length scale

which emerges from non-dimensionalizing the Fokker-Planck equation. Its

numerical value depends on the choice of characteristic velocity v th;

the invariant quantity is X The left side of Eqn. (2) is proportional

to dz and incorporates the relation noT - constant. The C-derivative

terms on the right derive from electron-electron collisions while the

-. l-derivative term contains equal contributions from electron-electron and

; electron-proton scattering. A factor of ' has been brought to the left

side in (2) to facilitate the following argument. Note, finally, that

disregarding boundary conditions, a local-Maxwellian ge- satisfies

Eqn. (2) when a(T) 0. Eqn. (2) is derived in detail in §SI.

Consider now the traditional (Chapman-Enskog) argument leading from

Eqn. (2) to Eqn. (1) First, one seeks a spatially-local (normal) solution

*: .of (2) in which there is no explicit spatial variation of $, but only an

implicit one arising from its dependence on the thermodynamic variables and

their gradients. In the context of Eqn. (2) this means we look for solutions

of the form * (p, , r; a(T)) a *(., r; , , . . .). Second, since

a is presumed small, one assumes that t ay be expanded as a power series in

the a. (This is known in the kinetic theory literature as

the Hilbert expansion assumption; see, e.g., Resibos and Do Leener 1977).

V'



Thus

- . O( ) + a2G(, .) + ..

On substituting this expansion into (2) and noting that a act 0(
aT Ta dT

one finds, in the usual way, that

.(U, C, T) - O()(1 + lia *'0 ) + 0 ((1),

where ** is a local-Maxwellian and fl satisfies an inhomogeneous ordinary

differential equation. This procedurethenis, in essence, the origin of

the well-known Spitzer-Hirm (1953) solution. It is seen that the approxima-

tion of local thermodynamic equilibrium (LTE) - taken here to mean that

1•
2f du 0* - is a necessary consequence of the assumption that the

distribution function may be expanded in a power series in the gradients,

for a local-Maxwellian must be annihilated by any viable collision integral.

LTE is therefore built into, rather than deduced from, the Chapman-Enskog

analysis.

But inspection of Eqn. (2) clearly shows that the regular-perturba-

tive approach just described cannot give valid results at velocities for

which a., > 0 (1). In this regime the gradient-related terms in (2) dominate

the collision terms, and this precludes finding meaningful spatially-local

solutions.

The actual form assumed by the tail of the EVDF under conditions for

which CL' becomes of order unity at moderate velocities is thus an open

question - and is the question addressed in this paper. The approach taken

has been to mount a careful numerical attack on the RMJ Fokker-Planck

equation - in the present context a quasi-linear, second-order, partial

differential equation in three independent variables with half-range boundary

conditions. The numerical method developed is a fourth-order, fully implicit,

finite difference algorithm. After extensive testing, the code was applied
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to calculating the EVDF for the simplest relevant models of the solar TR,

namely inhomogeneous plasma slabs of fully ionized hydrogen with a vertical

(or zero) magnetic field. (Optically thin radiation is also allowed for,

but not self-consistently.) Inhomogenity is introduced via boundary

conditions on the incoming distribution functions. The main conclusion

drawn from these calculations is that the local-Maxwellian approximation is

badly in error throughout the middle and lower TR. The computed distributions

exhibit a pronounced, anisotropic, high-velocity tail attributable to the free

streaming of fast electrons from hotter overlying layers. This effect causes

collisional ionization rates (and in some cases excitation rates) to be

enhanced over their LTE-values, often by several orders of magnitude.

The numerical results reported here have been obtained in the Maxwellian-

field-particle-approximation (MFPA), meaning that the Rosenbluth potentials

which enter the Fokker-Planck equation are evaluated using a local-Maxwellian

distribution for electrons. In §II1 I show that although this approximation

gives the angle-averaged part of the distribution function accurately,. its

use, together with my not having calculated the distribution function out to

sufficiently large velocities, precludes an accurate determination of the

electron flux. The heat flux question is therefore deferred to a later

publication.

WThe rest of tho paper is organized as follows: In §II I present

the mathematical model and discuss its limitations. In §111 I discuss the

numerical algorithm and, in §IV, give detailed results for the distribution

* function, showing its spatial,velocity and pitch angle dependence. In this

section I also calculate inelastic collisl n rates for helium and magnesium

and show how the enhanced ionization rates alter magnesium's ionization

equilibrium. In §V I discuss possible implications of the results and

.................. .°
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suggest that several observational and theoretical puzzles concerning the

" " low TR and upper chromospheremight be resolved by consideration of this

effect. The paper ends with a critical review of the recent literature on

this topic (Spicer (1979], Roussel-Dupr [1980a,b], Gurevich and Istomin [1979])

-. ,and a summary of results.

:.oM
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II. Model Definition

I consider an idealized TR consisting in a constant pressure slab of

fully ionized hydrogen containing a fictitious trace ion in sufficient

amount to allow the plasma to radiate energy at a rate equal to that

radiated by an optically thin plasma with cosmic element abundances, as

calculated by McWhirter et al. (1975). The slab has thickness L and any

magnetic field present is assumed to lie along the gradient direction. The

protons are taken to be infinitely massive, at rest, and distributed so as to

provide charge neutrality. I neglect the trace ion's contribution to the

charge balance so that n - ne B n. The constraint that no steady current
p e

flow through the TR then implies that the average electron velocity must be

zero. Inhomogenity is introduced via boundary conditions on the incoming

electron distribution function on the planes z - 0 and z - L, as described

below. Finally, I assume that the EVDF obeys tLe Fokker-Planck equation,

in the form derived by Rosenbluth, MacDonald and Judd (1957). Several

limitations of this central assumption should be mentioned.

, First, the RMJ equation is, at best, accurate only to within terms of

order (Zn A)-1; i.e., to "dominant order" (e.g., Grad 1962). Moreover,

it appears (Spitzer 1962, Siambis and Stitzer 1974) that the "dominant"

approximation is not uniformly valid in velocity. More specifically, a

non-dominant contribution to the parallel'( v e ) component of the velocity
v v

diffusion tensor, which of course is omitted from the RMJ equation, decays

1 Siambis and Stitzer erroneously attribute differences between their
results for the parallel diffusion coefficient and those of Spitzer (1962)
(and RMJ) to their retention of a velocity-dependent Coulomb logarithm.
The latter refinement leads only to minor corrections to the Spitzer
result however. The main reason for the discrepancy lies in their
keeping a non-dominant term which is neglected by Spitzer.

i,
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as v-1 for large v, whereas the dominant contribution decays as v2. The

neglected term, is therefore no longer negligible for (VM) 2 >0 (in A).

Nevertheless, Siambis and Stitzer show that the contribution of the neglected

term to the energy loss rate of a test particle is of relative order (in A)-'

at all velocities, thereby leading one to suspect that its retention would

not significantly alter results obtained from the RMJ equation. This latter

conjecture is currently under investigation.

Second, because the RMJ equation was derived from consideration of

successive but uncorrelated binary events, its use precludes consideration

of possible collective effects. However, in the present problem, where the

question is whether significant departures from a local-Maxwellian distribu-

tion exist under conditions in which classical theory suggests they do not,

the disregard of collective effects may be viewed as a plausible working

hypothesis, which may be checkeda posteriori, at least in principle. In

practice, furnishing proof that collective effects are unimportant is likely

to be difficult. Not only must one demonstrate stability against both

electrostatic and electromagnetic perturbations, but one must also show that

electron scattering by enhanced plasma fluctuations, which arise even in

stable non-Maxwellian plasmas (e.g., Tidman and Eviatar 1965), is negligible

compared to Coulomb scattering. Clearly, then, the question of collective

effects in the present context is an involved one, and is likely to be a

fruitful area of future research. It is not addressed further in this paper.

The reader should bear in mind that such effects may alter conclusions

drawn below.

Third, and lastly, note that because the effect of a background

magnetic field on binary collision dynamics is ignored in the RMJ equation,

its use is limited to situations in which the mean electron gyroradius
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is large compared with the Debye length (e.g., Baldwin and Watson 1975). This

requires B < 0-2 n where B is the magnetic field strength in gauss

and n is the electron density in cm- . This condition is not overly

restrictive for solar applications.

Consider now the appropriateness of a time-independent calculation.

For a TR with nT - const. = 6 x 10 K cm , the electron-electron relaxa-

v 3.5 x 10-16 T5/2 3
3e Vth me n A) ,varies between

5 x 10-3  (-.thv sec at the top of the TR (T - 105.8 K, InA - 20) and
vth)K n 2O ad

3 x 1 -, 3sec at the bottom (T = 10 K, in A = 11). Thus, even in

the far tail of the distribution ( 5 stationarity is achieved in

( th -4
approximately one second at the top of the TR and in 10 sec at the bottom.

On the other hand, relevant macroscopic time scales, for example, the rise

times of spicules, are typically of the order of minutes (e.g., Athay 1976, p. 114)

Proceeding, I write the electron Fokker-Planck equation as

v f e (E+xB) •L- f + 
(6t

- ax m -c -)e Olinel. (3)

Here -e and m are the electron charge and mass, E is the self-consistent

polarization electric field required for zero current flow, and the terms

on the right represent elastic and inelastic collision terms. The latter

are included to allow for the effect of radiative losses on the electron

temperature. The distribution function f is normalized to the average

electron number density.

Let (Zx' Z , % ) be an orthonormal triplet with a in the direction of

increasing temperature. I adopt a spherical coordinate system in velocity

space (v, , ) with polar axis along a . The corresponding unit vectors are

ft.
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e- (4a)
e V cos z + sin 6 (cos 8 ex + sin y

e I -- sin8Z + cos e (cos a a + sin ^e y) (4b)* 9 si z x

a -sin x +cosS (4c)
x y.

It will be useful below to note that

1 a i a(5a)- : Vv= vY +  e v-" + vs-e
v v v ve v sin 8a$

and that

.v (Sb)

58 e

Ssin e ; cose 8  ; - (sin e a + Cos e'a

with all other unit-vector derivatives equal to zero.

Now consider the magnetic field terms in (3). With B - B z I find

that

e (v x B) * 7f -
mc- v

(6)

where , = eB/mc is the electron gyrofrequency. The spatial gradient term

in (3) is

f - f f fv" vco.8-+sn e cosB-+ sinS ,B7

af=v cos e
ma
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where the second equality follows from the assumed homogeneity of f In

the x-y plane. If, in the boundary conditions,

1(8)

f!v, z - L - f >v. ; v C 0,

the prescribed functions f are chosen B-independent, it then follows that

0, for there are no further terms In (3) which inzroduce a B-dependence

Into f. Thus, under the above restrictions the magnetic field has no

effect on the distribution function. -Viewed differently, a vertical magnetic

field is irrelevant because, for a given pitch angle, the helical and

slant pathlength between heights z1 and zare equal.

Following Rosenbluth et al. (1957) I write

6 a 3h ~ 2 /,2RQ

6f r a -.- (6tlten av(a \ivf) 2 aivav avav ) ~(a

4" ,

41e 4 Z2

r 2 In A (9b)

" + m (,. v ,
a 0m ) f d v (9c)!IV - v-"' I

I 31K- I)(zv) f f _, _ v - v d v (9d)
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Here unsubscripted species-dependent quantities refer to electrons and

the su=.ation in (9a) is over electrons and protons. It follows from

(9c, d) that

M h ,and from the relation v2 Iv- v' "1 . .4,6 3 (v - v')

that V2 h --47 ( f . Use of these equations allows (9a)

to be rewritten as

dSf r - + a 2 2 +-' f f

let M~ +M 3V av 2 avav avav

a form useful for computational work because the electron-electron potential

h. does not appear.

I next write the right side of (10) in coordinate form, beginning with
. 3(v

the electron-proton terms. Under the stated idealizations fp n 6 (), so

that (9c) implies h +. -S , and (9d) implies gp - nv.p ( )es v v P

Using (5) and (6) I now find that

( ha).. v 2 ev
_ V

2ag9::::R n(00+ (11b)

" vav" 0" 0 B)

With f = f (z, 8, v) I also find that

af L + '0 B (12a

av v av v aO

: .

a 2f a 2 f . _0 L A2 f + a_
vv v 2 0 ( a92 v av

(12b)

co+ S 2 + eo + )2f 1v
'qP Vz V 2D
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3g 2:: age 9 2e

with similar expressions for v and -vv"

It remains only to perform the contractions indicated in (10).

Neglecting the term 4r M- f f and changing variables from e to u cos e,
-: P

I find the electron proton-scattering term to be

3h 32 8 2 2 f
3v i- i

v 3v 2 avav •__ 2v3  a(
b2v

For the electron-electron terms I obtain

• ~2g

* a f 2) a2  r 2f f+e-f+p-- f a + a- +b ---- + -- + d (14)
2 avav avv av2  aap a 2  av l

wherc

2
a 2 2 (15a)

,2 2

av

2 a 2

..1- 2 _ [-( - 2) 3

b 2 -,. -2v V al u(5b
V

I 2

V 2 v v3 l

p-4f (15f)

. y . .., .. . . . . . . . ..



L For notational convenience I have dropped the subscript from g in (15a -e).

Now consider the inelastic collision term in (2). Let the imaginary

trace element have two bound levels with energy difference E12 and number

densities Ni, N2 and let a1 2 (v) denote the inelastic cross section (assumed

to be isotropic). For simplicity I take N * 0, in which case (cf. Bernstein
2

1979, Shoub 1977)

-21
at:i V nl.- 1 2 C 2" dy' f (v', v a 12 (V) f (I, (16)

ine. 11

- where, by virtue of energy conservation,

1 -2 1 2-mVy nM V + E2 2 12

It follows from (16) that the rate per unit volume at which cnergy is lost

* from clectrons due to inelastic collisions is

fdv) ] -J d 3 g2 E(v) f d.f(m, v)

v12  -1

(17)

f2 E 1/2
where v12 - ) N1 is determined by equating the right side of (17)

to the rate per unit volume at which energy is radiated by the plasma.

w o

.* .i - 2 " 2 , . ' " .
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2
As mentioned, I take the latter rate to be n (T), where n is the electron

density and (T) is the function given by McWhirter et al. (1975). I have

arbitrarily chosen

( 'ra2 O; v v1 2" Z.O12 v) =(182

Wao2
,s v > vl

where a°  5.29 x 10"9 cm, and we have let E12 = E12 (z) 4kT0 (z), where

T (z) is defined below. (18b)
0

* Although the above treatment of the inelastic collision terms is

schematic, it adequately accounts for the effect of radiative losses

on the electron temperature profile. On the other hand, it is

inadequate for treating possible distortion of the electron energy

spectrum by imbalanced inelastic collisions, and it is therefore

pertinent to ask if such distortion will occur In the low TR. The

answer, most likely, is that it will not. Any tendency of imbalanced

inelastic collisions to form bumps or dips will be overipowered by the

smoothing, Maxwellian-producing action of electron-electron collisions,

provided the collision frequency of the latter exceeds the inelastic

collision frequency. For thermal hydrogen plasma this is the case

provided n  10 (Shoub 1977), where nH is the neutral hydrogen2 i ne
K density. In the upper chromosphere, nH < ne (n. < 20 n* in the region

where hydrogen Lyman-a formed), and electron-trace ion inelastic

collision frequency is very small relative to the elastic collision

frequency. Thus, except in the event that non-thermal enhancements of

the hydrogen 1-2 excitation rate (I IV) are as large as factors of 10 - 104

distortion of the electron energy spectrum by inelastic collisions is

unlikely to be important.
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Dimensionless Variables

4 6
In going from the chromosphere (T 10 K) to corona (T - 2 x 10 K)

the electron thermal velocity increases by a factor of roughly 14. For

computational purposes it is therefore convenient to work with dimensionless

variables. Toward this end I introduce reference temperature, density and
thermal velocity scales denoted T0(z), no(z) and vth(z) (2kTo/U)1/2

0 z n 0z

respectively, and choose

no(Z) To(z) - P - constant, (19)

as is appropriate for isobaric slabs. In principle T (z) may be any monotonic

function satisfying T (z -0 ) - T and T(z - L) =T where T and Th are
0c 0 Luhtwee and ar

temperatures characterizing the incoming discribution functions at the

boundaries. In practice it has been found most economical to have

T (z) conform as closely as pasible to the actual temperature structure of

the atmosphere. I tberefore choose T (z) as the solution of the macroscopic

electron energy equation

d (K 5/2 dT +n21(T 0(0
dz T )n A 0~z dz/ 2 0 (0

T (z = 0) Tc

To(a L) T

o

!- 1-5 O7/2_c~e

Here K - 1.87 x 10 erg/ (K -cm-sc) is the constant in the Spitzer-Hirm

thermal conductivity, L is the slab thickness, A - 3(kT0 )
2  -3 (4 rP)-1/2

and (To ) is McWhirter et al.'s heating function, modified to allow for the
0

partial ionization of hydrogen as described in their paper. I represent

b analytically using a piecewise-linear fit (log 0 vs. log T0 ) to their

graph. Equation (20) is solved numerically using finite differences in

conjunction with generalized Newton-Raphson iteration.
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I note that the T-(z) determined via(20) will differ from the T(z),
0

the temperature determined from the Fokker-Planck equation, only to the

ex tent that the true heat flux differs from that predicted by the Spitmr-Hirm

formula. Even the latter T(z) is not self-consistent however, due to

the dependence of the radiative losses, which I am taking as given, on the

tail of the electron distribution function. Except for a few brief remarks

- in §IV, I do not address this latter problem here.

Now consider my choices for the parameters L, Tc and

Th . Ideally one would locate the upper boundary at the point of maximum

temperature in the corona (i.e., at R 1, 3-4 R.), thereby accounting for the

entire reservoir of hot plasma capable of supplying fast electrons to the

underlying TR. And the lower boundary would ideally be located

deep in chromosphere in order to insure that all electrons thermalize

within the slab. Unfortunately, to model this expanse of atmosphere

correctly requires consideration of several effects - pressure gradients,

spherical geometry, self-consistent ionization equilibrium calculations for

hydrogen and the other major electron donors - which were judged best

omitted from this exploratory calculation. Thus I have chosen the thickest

slab for which constant pressure remains a reasonable assumption

(L - 5 x 104 km), and a lower boundary temperature high enough that hydrogen

remains almost fully ionized within the slab (Tc = 8100K). I set the upper

boundary temperature Th equal to the average coronal value of 2 x 10 6K.

Numerical results are reported for these values of Tc, Th and L, and for

several pressures.

Returning to our discussion of the Fokker-Planck equation, I introduce

the dimensionless variable:.
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S- v/Vth  
(21a)

(k T (z))2:.T d0' (21b)

f re n Ln A
o 0

n271 z) (2c)

T) th f 2 Z) (210

and parameters

d tn T d.n (21 )

z . (210)

"" = z (21f)

N0 n0

o (21g)
n 2 2
-r (e /kT) En A

I

-
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. 4.

To facilitate comparisons, I note that a = B B B = - E A - j-, where

AF and BT are the parameters appearing in Spitzer and Hirm's (1953) paper

and E is Dreicer's (1959) critical field. The parameter n enters theC

FPE as a factor of the.inelastic collision terms. Its magnitude can be

estimated by equating the right side of (17) (evaluated with f a

Maxwellian, a w 2 and l12 ' 4 kTo(z)) to n (T )and making use of
012 w 0  12

-20 -1/2 -1 -1
the estimate (McWhirter et al.): *(T 0 5 x 10 T0  erg cm sec

04

which is clalmed to be accurate to within a factor of three for 1.5 x 104

K < T < 10 7K. The result is n - 1.9 x 10-6.

The electron thermodynamic variables are related to the reference

scales T0 , n and Vth through the following expressions (written for zero

average electron velocity):

density:

1
nn i 2 * ~ ~1(22ni)

-1 0

average velocity:

L I
"< n°Vh dh J (1, , 0 dF -0 (22b)

10

internal energy:

2 " 1 ( , T ) d r ( 2 2 c

U,.1



21

pressure tensor:

'n "Pi e P e Zz + P. (e xx +  Y e Y (22d)

p - <a v.v > - 2n kT 1 i, ,r d2 2e

-1 0111

:- -mn <v k v d - f 0 d (v, 2, ) d (22f)
"00 f

-0

heat flux:

k'm~~>t o ) f U S 5' (p' 1,, r) d , (22g),

S 2 5~
qz " mn <v v Z> v th (n°0kT0 f dI-T C(2)

-1 0

Finally, I note that if the distribution function is locally Maxwellian with

density no(Z) and temperature T,(z), its dimensionhess fori is

"] 2

1 (u' ,' ) 2 eT) . (23a)

.4* satisfies the normalization

1

dii C * (V, C, T) dC = 1. (23b)

r
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When written in terms of the above dimensionless variables the

.okker-Planck equation becomes

S + 5~) i U + +
lee lep inel.

(24a)

with

2 2 2

lee

1 n - p (24c)
at3n apjt ~ ' u
ep 2 o

2inel f
otiel {(+ 2 di ' ( '(1', C + 2, T) - (I(- 2) $( C. x

(24d)

The coefficients in (24b) are given in (15a - e) provided v and g in latter

* formulas are replaced by their dimensionless counterparts j and Z,
l 2.

1ia 2.1respectively; e.g., a --- In obtaining (24d) from (16) I have used
2 ;&2

(18a, b) and have introduced the notation H(x) for the unit step function.

A formula for convenient numerical evaluation of the potential Z can

be obtained by manipulating the generating function of the Legendre poly-

nomials (Morse & Feshbach 1953, p. 597) to find that

w--
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A t P; n) (Cos y) ,(25)
n=O

where y is the angle between E and F' and

~~ 2n~2n (1)[ ~ + # (26), ~ Tn - 1 > 2n + 3 \>

Here > is the larger and < the smaller of € and .

On substituting (25) into (21d) and using the spherical harmonic

addition theorem to express P (cos y) in terms of P ( ) and P (W')

I obtain

t(., ¢, T) = n pn(j) (27a)

n=O

where

n T) - 2J V2r T) d4' (27b)n(, T =2n +'l f n '

0

and

n . 2n + 1 [ di' PG(') G (6z' T, T) (27c)
2 - I
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In practice, series (27a) converges rapidly because Z is determined mainly

by the behavior of 0 at thermal velocities (see 21d), where 0 remains nearly

isotropic. An added virtue of this formulation is that various v and

•-derivatives of Z, needed for evaluating the coefficients (15a - f), can

be obtained analytically from the foregoing formulas, thereby avoiding

errors inherent to numerical differentiation.

Auxiliary Conditions

At the boundaries I choose

*., T, 0 - 0) 0 (, ) *() 0<<

(28)

where is a local Maxwellian defined in (23a). This choice can be defended

on two grounds beyond simplicity. First, due to the boundaries being located

in regions of weak gradients (top) and high density (bottom), I expect the

actual incoming distributions to be close to local Maxwellians. Second,

I find that 3 few mean free paths away from the boundaties the computed

solution is relatively insersitive choice of t provided they do not

differ significantly from 0*. For example, replacing 0* in (28) by the

* appropriate Spitzer-Hirm distributions has little effect on the computed

result in the slab interior. The role of boundary conditions is elucidated

in paper II.

Consider now the task of prescribing constraints on the solution in

velocity space. To begin, observe that since an electron at rest has no

associated direction of flight, must be single valued at 0 0, and hence

. 0 for all , r. (29)

c -o
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Two additional constraints one wishes to impcse on the solution are

that it remain nonsingular (particularly at = 0; see Eq. 43) and that

it decay at large . Unfortunately, there appears to be no unique way

to implement these constraints mathematically. Although the forms

chosen below are physically motivated, they are not unique; others could

probably serve equally well. Fortunately, numerical experiments show that

the solutions are insensitive to the particular forms chosen provided they

are sensible expressions of the above physical ideas.

Proceeding, I note that (24a) can be recast as

U 3 T -2 (5 + 9 )=- . J (30a)

where J is the total velocity-space flux density:

jj +J + - (30b)
- e -ep -lnel. z

It can be verified that

m a a 2
-es 2m _ -- S) 2-at - as -ii ; S e,p (30c)
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In the following I neglect the contribution of Jinel. to J, because it both

encumbers the argument and is physically unimportant. Now let V denote a

sphere in velocity space centered at the origin with radius " Integrate

(30a) over V, use the divergence theorem, neglect J 0 ( -

and note that S(T) has presumably been chosen so that f d . .( ., r ) 3 0

(zero current condition) to obtain V

f dw J 0 - (B + a *(ia, ) ". =o , (31)

where T-dependencies have been suppressed. In order to obtain a constraint on

the solution at max .1 assume that at each T there are no electrons incident

on the spherical surface max from its exterior; i.e., I assume

TOT(, %ax) > 0 for all u, where ITOT is the bracketed quantity in (31).

It then follows that (31) can be satisfied only if the integrand vanishes1:

J e( + a • = 0 all 1.,t. (32):1c e T)e

=max

The stipulation that no electrons be incident on the surface = max

from remote regions of velocity space is meaningful provided the actual

number of electrons arriving at location T with energy exceeding

1 2 2
Svmax (T) - kT (T) max is negligibly small. A sufficient condition for

1 The term proportional to a in Eq. (32) was inadvertently omitted in
calculating the results reported here. I do not believe that this is
a serious error.
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this to hold is Z /T (say), for then there are essentially no electrons

anywhere in the atmosphere with energy exceeding -i m v ax (r = 0)

For T h a 2 x 106 K and T€ M (8.1 x 10 3K) this requires &max Z 47. For the present

purpose of determining whether significant departures from LTE occur, this estimat

proves unnecessarily large, for I find that the computed solution for Ec < -"
max

(say) is largely independent of max provided &max > 5. However, the value

of m finally adop aud, namely ax = 6, turns out to be too small to

* accura tely de termine the elec tron hea t flux in the lower TR.

Again let V denote a spherical volume in velocity space centered at

the origin, but now with radius C - << 1. By integrating (30a) over V,

taking the limit e 0, and demanding that * and its derivatives remain

bounded as 0 - 0, I deduce that

lim Vu z 3) 0 (33)
C-l d[aj e(u' C) a i,~ J

which states that the net efflux of electrons from the origin is zero. To

obtain a constraint on the solution I replace (33) by the stronger require-

ment that electrons neither enter nor leave velocity space through the

origin; i.e.,

-iO e e(, e) e 0 (zj 0 al
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By expanding expression (30c) for Je Eq. (32) can be brought into

the form.

A +3b5+C * - 0 all U, T, (35a)
b aC 

max

where

A 2 B V 2 (35

. at 2 ( -+ (35d)
Ab 2u 2 2 ap E~F

Equation (34) can be simplified by using (27a) to evaluate 1( u, v )

and its derivatives as 0 * . The result is

D--+.b ] 0, all U, T (36a)

,z.

where

Db I 1, (36b)

Eb= 21 I (36c)
b 1

-7
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Here I have used the notation

Im n C (&) d C 

(36d )

0

vhere the 0 are defined in (27c).

Equations (28), (29), (35a-d)1 and (36a-d) are the auxiliary conditions

used in this study. Note that (35a) and (36a) are satisfied identically

by * = 0* if a - B = 0 and if the coefficients Ab, ... , are evaluated

for Maxvellian field particles.

As a final remark on auxiliary conditions, I note that Kileen and Mark

(1970) have shown that the conditions (8 = cos

-' " ' .') -o(3

2' (3

O (8 it, 30 0e-, - - , (31

are necessary for to be azimuthally symmetric about " They also argue
z

that because sin 8 a_, (37b) does not constraint - at u - +1, and

consequently it is preferable to use 8 rather than U as the independent

angular variable. I note, however, that (37b) will be satisfied provided

q -- remains bounded at z - +1; this latter condition is therefore the

appropriate one when using V as independent variable. I also observe that

(36a) reduces to (37a) at =0.

Set footnote p. 26.

114
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ax-wellian Field Particle Approximation

It will be useful later on to have explicit expressions for the co-

efficients in (24b) when the potential I is evaluated using = *. This

has been referred to earlier an the Maxwellian field particle approximation

(MFPA). From (21d) and (23a) I find by straightforward integration that

~fd

(31i)

S + -L) erf (F,) + -

Using this result and equations (15a-e) the coefficients are readily

evaluated. I obtain

- erf(g) _
2&3 C 2 (39a)

k b* =0
(39b)

2 q- (C) q q(C) = -erf(Q) + (39

S 3  
(39c)

tI

d* (39d)

e Z(39e)

*(

'6
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Neglecting terms of order a in the above coefficients and equating

the proton and reference densities leads to the following large-velocity

form of the Fokker-Planck equation in the MFPA:

+ +

0 31 2 24 3r
5 2&~a D& 2&

1 D.L {(1 2) ± + at (41)
+3 2 au/ 6t
C4 lnel.

To the same approximation the auxiliary condition (35a) is

+ ( l&2 (203 + at2 )] 1} -0 (42)

&-max

ror << 1, the MFA form of the Fokker-Planck equation is

(5+ +( 2 + ,,S

I

Laztly. the MFPA form of the auxiliary condition (36a) is

4 ~ .+ 0ui'l - (44)

Note that if o . 0, all of thi above equaiotns ire: 16t 1nel..r satisfied by ¢ "

F _. .-.
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III. Numerical Method

By now it is perhaps apparent that the central difficulty in this problem

lies in devising a means of extracting reliable information from Eq. (24a).

The approach outlined here, a doubly iterative, fully implicit, fourth-order

finite difference scheme, evolved out of my experience with several simpler but

ultimately unsuccessful approaches.

As mentioned earlier, I treat the functional dependence of the coeffi-

cients in the differential equation and auxiliary conditions on the distribution

function by iteration, starting from the approximation 0 = O* everywhere (MFPA).

This is the first of the two levels of iteration referred to above. Its

effectiveness, is discussed at the end of this section."U

My approach to the linear problem has been motivated by the following

analogy. Consider (24a) with the inelastic terms omitted for the moment.

This equation is of the general form

- (A 3 + B a + C a + D 3 + E D + G) € (45)

ELO

where the coefficients depend on -. , and r. I find empirically that A > 0,

C 0, and 4AC - B- > 0 for all T, , r, except at p = :1 where C - B - 0.

These inequalities can be verified explicitly in the %MPA; their relevance is

made clear below. Let = a L or -0 and L for

and rewrite (45) as the pair of equations

L+  + (46a)

0, ) 0= -a (1 O

Db

IV1
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".-. and

L (46b)

0 - *(u,) , -I<u<Omax b

Here I have appended boundary conditions (28) in order to brinq out tho

similarity of these equations to the generalized two-dimensional diffusion

equation

at (A' a + B' a + C' a + D' a + E' a + G')T ; (x,y) cR, t>O• at xx XY yy xy

(47)J2

A'>0 , C'>0 , 4A'C'-B >0 , all (x,y) ER

f(X~y't-0) - ' (x,y) ,

where t is time, R is a region of the x-y plane, and where now the inequalities

assure that the equation is parabolic (see, e.g. Carrier and Pearson 1976, p. 266).

This latter statement implies that Eq. (47) can be stably integrated forward, but

not backward in time. Intuitively speaking, this is because the differential opera-

tor on the right in (47) is a smoothing operator; its action on a spatially local-

ized function produces a less localized one. Hence distinct initial configurations,

'(Xy), evolve into a similar ones as time progresses. Any attempt to reverse

this evolution is therefore unstable.

q'

Ki
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In our case the spatial variable ds -- plays a role analogous to time

in (47), while the velocity variables v and are analogous to x and y.

:. Equation (46a) is integrated forward in T, starting from the boundary condition

*- at T - 0; Eq. (46b), on the other hand, is integrated backwards in T, starting

from the boundary condition at T An essential complication exists, however,

in that the two equations are coupled through continuity requirements on and

* its p-derivatives at u - 0. Fortunately, this complication is readily handled

at the difference-equation level.

C on s i d e r a c e n t e r e d, three-point difference approximation

to a20-near p - 0. Choose an equally spaced mesh on [-1,1] with mesh width
al 2

u - 2.0/(NA-.), where NA is an even integer. Let k° - NA/2 and label points

so that -1 i "''' < < 0 <0+l , ..., <NA < 1. (Note that p - 0 is not

a mesh point.) Then

a 2- ok0-l
2 k 0 kog+1

2
Pinko (L )2

where Ck means :(;k). Other u-derivatives at mesh points adjacent to u = 0 are

handled in a similar way.
IK .It is now not difficult to see that if the u and &-derivatives in Eqs. (46a,

b) and side conditions (38c, d) are replaced by difference quotients, with

u-derivatives at mesh points near p u 0 treated as shown above and those near

K



- 1 approximated by one-sided differences, the resulting difference equations

can be cast in the matrix form

++

M _ Jl< (48a)

where I have divided (46a,b) by the product u& # 0. Here 0-(T) are vectors
of length k x NV, where NV is the number of uniformly spaced velocity points.

Elements of - are ordered so that all angle points at a given velocity are
• ajaent ie.for1 k< k the (k + (Q - 1) ko th element of 0- is

th

¢(.k, vj, T), and for kO + <k< NA, the (k - k0 + (j - 1)k) element of
+ (+, +
. (T) is 0(11 vj, r). M and N- are square matrices of order k x NV, and, for

three-point velocity differences, are block-tridiagonal in form.

Equations (48a) and (48b) are now solved by iteration. One starts with

..* an initial estimate of ±7, say _ - j , uses this estimate to evaluate the term

N appearing on the right in (48b) for all T, and then integrates the result-

ing inhomogeneous equation forward in T, starting from T = 0, where

anU ending at 7 - ax The + so obtained is then used to evaluate the term- max. -

N-i appearing on the right in (48a), and the resulting inhomogeneous equation

is integrated backward from r to -r- 0. The process is then iterated to~max

convergence.

Figure 1 illustrates how this scheme works in practice. There I plot

successive approximations to 0(jj) at fixed (- 5.48) and T(- 147" T (0 )

5.28 x 105K) for a TR model with P - P /2. The numbers labeling curves denote
0

-iteration number. Thus, "0" is the initial estimate ¢*(Z a 5.48). "1" is the

result of the first forward pass, "2" is tne result of the first backward pass,
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and so on. The curve labeled "15" is the result of seven-and-a-half full

iterations; as seen, it is remarkably smooth. Behavior at other depths and

other velocities is similar. A summary of my experience with this

* iterative process is the following. The first few passes produce large rela-

tive changes in the solution. After ten or so iterations the largest relative

* change between iterates is generally a few percent; after twenty it is a few

tenths of a percent. Thereafter the rate of convergence is slower.

In practice the iteration is stopped when the largest relative correction

* to -he previous iterate is a few tenths of a percent, as this is estimated to

be the level of the overall truncation error.

Consider. now what turns out to be the crux of the numerical problem,

namely choice of a spatial-differencing scheme. By analogy with the situation

for time-differencing Eq. (47), there are three classes of method available (see

* e.g., Richtmyer and Morton, 1967): explicit, alternating direction implicit

(hereafter ADI), and fully implicit differencing. NQte that the computa-

* tional cost per step of these methods increases sharply in order listed. Pertinent

*aspects of the problei. to be considered in choosing among these are: a) our

interest in long "integration times" - t can be as large as 10 ; b) theM max

necassity of storing the solution, typically 1.5 x 104 numbers per depth; and

c) the strong velocity dependence of the coefficients in the differential equa-

tion; in particular, their singular behavior as 0 0. Factors (a) and (b)

imply that methods requiring a small step size, although perhaps competitive

from the standpoint of computation time, may be unsuitable due to storage

limitations. Indeed, due to (c), this situation actually arises for both

explicit and ADI difference schemes (see below).

U

| | ilw mnm ,...,.,.. ,a.ann a - ,n.,. . .
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In practice, then, only fully implicit schemes have proven effective,

essentially because only these permit use of step sizes large enough for the cal-

culation to be feasible. The situation is summarized by the following estimates

of the maximum local step size AT allowed by the different methods:

AT < 0 [ )(A) () 2  , explicit (49a)

[ ( )31/2

a()AT < 0 AU ,) . ADI (49b)

a(T)AT < 1 , fully implicit. (49c)

Arguments supporting (49a,b) are given in the Appendix. Suffice it here to

say that (49a) arises from stability considerations, while (49b) is a necessary

condition for the difference between ADI and fully implicit approximations to

the spatial derivative term be uniformly small. Since Au A& 0.025, and in

light of (a) and (b) above, it is clear that neither explicit nor ADI schemes

are suited for this problem. Condition (49c), on the other hand, derives from

the underlying physics as can be seen from the following argument.

As discussed in the introduction, electrons at location r are collision-

dom~inated for velocities such that a(-)j 4 < 1. In this regime the distorting

effect of gradients and electric field on the distribution function is

mediated by velocity-space derivative terms proportional to a and 8 on the

left in (24a); the L term is unimportant. Thus, at low velocities the equation

is local in T, but is non-local in velocity space. On the other hand, for large

velocities (a&4 >> 1) electrons traverse many temperature scale lengths before

thermalizing and the equation becomes spatially non-local. Since the -L term
-1/4

-first becomes important at c - / a one expects the largest allowable step

size to be comparable to the mean free path evaluated at C; i.e.,
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~z < X dn , or equivalently, aLT < 1. Since a is quite small for

conditions of interest (Table 1), it should be possible to construct models

* using a modest number of depth points. As mentioned, only fully implicit

differencing allows one to realize this possibility.

Unfortunately, the computational cost per step of fully implicit differencing

is substantial, for at each depth one must solve a large system of linear

equations. For three-point difference approximations to i-derivatives these

equations are block-tridiagonal in form. Attempts to solve these equations

using iterative techniques (successive block over-relaxation and ADI iteration)

proved unsuccessful, due partly, no doubt, to my inability to find good accelera-

tion parameters for either method, but due also, in part, to a more fundamental

reason. Inspection of (41) reveals that the first p and v-derivative terms become

dominant at large velocities. If these are approximated using centered differ-

ences, as is desirable from the standpoint of accuracy, the associated difference

matrix becomes off-diagonally dominant, and hence ill-suited for treatment by

iterative methods.

I was thus led to adopt the direct method of block-triangular-factoriza-

tion (block LU-decomposition). In addition to allowingone to obtain accurate

bolucions to the difference equations in routine fashion, this approach has

the virtue of permitting many (up to 30, say) forward-backward iterations to

be performed at a cost not substantially greater than that of a single pass.

This is because the amount of computation required to factor the original matrix

at a given depth is far greater than needed to solve the two resulting block-
U

triangular systems. Disadvantages of the direct approach, however, are that it

requires e.,tensive disk storage space and that, unless carefully coded, the cal-

-culation cnn become I/0 bound during the solution phase of execution.
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Unfortunately, when the above scheme was impiemented using second-oruer, cen-

tered difference approximations for all derivatives, and run on the finest mesh

storage capabilities would permit, it gave inaccurate results. Subsequent investi-

gation showed, however, that accuracy could be improved substantially by going to

higher-order differences. I was thus led to the following difference approxima-

tion to (45) at interior mesh points:

ak% 4{ k (A 4+B +C a 6 +E8 6 + G 1' (50)

U k>0, i>5, ko <k<NA-3, 3<j<NV-2

Here means (k T) all coefficients are evaluated at the point

k  , Ti), and the difference operators are defined as follows:

6+ .} (24 Ar)- [50 0i - 96 +i+ 72 0i-2 - 32 1i-3 + 6 i-4] (51a)

•~T j I

e(12 K - 8 ti1+ 8 s -~ t j-2 (51b)

-." ljk -) j-2 + 16 vj_ 30: + 16 2+l - (51c)

1"I j- , ijl

;6 I (60 )i 9 - 45 + 41 0 + kPjk (6 )-) [Ok-3 + 9 k-2 Ok-l + k+1 90 Ok+2 + 'k+3]

-1 (51d)

5 6 1 [l80(O 2] [20k - 2 7 k-2 + 270 ~kl- 490 ~~

, (51e)

- 27 pk+2.+ 2 k+3]-1

'Here unneeded subscripts and superscripts have been omitted. Superscripts on tne

:' denote the order of the associated truncation error.
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Calling the right side of (50) 'Tk I write the diifference equations
jk'

for grid points near the lower boundary as:

i - 2, 3, 1k > 0

i i i ii

" - J (52a)

i -4, k> 0

( 11 1 18 i-i + 9 i-2 2 i-3 i

6.. -180 - jk (52b)

For the U-derivatives near end points I use centered fourth-order formulas

a NA-2' and one-sided fourth-order formulas at NA-I and u NA' -derivatvs

at - L and m A are approximated by centered second-order formulas, and

at - , by one-sided second-order formulas. Use of these second-order:.. max

formulas does not seem to have degraded the overall fourth-order accuracy.

The foregoing difference equations, together with their counterparts for

" < 0 and difference approximations to the subsidiary conditions (42) and (44),

can. be written in matrix notation as:

+r+ + +i 0- U - ,>O, i-2, ... , ND (53a)

- - q - p<O, i-ND-I, ... , 1 (53b)Ui-i Ii - i 1i

V.

V



Here ND is the number of depths and the vectors j represent that part of the

spatial derivative term depending on -. for Z < i (u > 0) or Z > i ( < 0); at

any stage of the calculation the i are therefore known vectors. The origin of

matrices N_ and the ordering of elements of 4 has been discussed in the lines
.-i

following (48b). Matrices M are of order k xNV (recall k NA/2) and are
;Ai 00

block-pentadiagonal in form;

"1 R1 &I
12 i2 22 12 0

"3 13 i3 3 E-3

*E

*0 NV-2DI -

The submatrices A .. , E are square and of order k; in general, they are all

bandmatrices with bandwidth seven. In the MFPA, however, off-diagonal sub-

matrice,. are diagonal due to the absence of the mixed derivative term from (45).

From the defining relation " it is easily found that

I0
B2  i S2 22 12

63 13 1 0

00D

S a,

-1"
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W

where the submatrices are again square and of order k and I is the identity
0 =

matrix. W e note that although the original A , Bj' ... , are sparse, their

counterparts Aj , B except E -E )are, in general, dense.

Several comments concerning my choice of difference formulas are in

order. First, I note that the submatrices in Uand Jfill regardless of the

bandwidth of the submatrices in M . Computation and storage requirements are

therefore largely independent of the order of v-difference formulas. In

addition to small truncation errors, the chosen seven-point formulas afford

* enhanced coupling between positive and negative u-components of the solution.

. Similarly, the use of five-level spatial differences entails less storage and com-

putation than do centered, second-order formulae, yet offer smaller truncation
V

errors. Unfortunately, going from three to five-point velocity differences costs

dearly; for a fixed number of velocity mesh points, disk storage doubles and com-

putation increases by roughly a factor of 2.5. Nevertheless, I find that the increased

*accuracy of the fourth-order method more than compensate for the added storage

requirements per point.

The author has recontly learned that it is possible to difference (43)

• in such a way as to obtain fourth-order accurate approximations to the ; and

-derivatives and yet have the associated difference matrices, M-, be block-

tridiagonal. This procedure is being tested and if proven effective will be

used in future versions of the present code. Also, newly developed iterative

methods for solution of non-symmetric sparse matrices (Manteuffel 1977, Kershaw

1977, Van Der Vorst 1981) appear promising.
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An overview of the linear problem can be had by viewing its global matrix

structure:

110 t1

+ I

xxx I++

+% IN n

XX X x 0

N I --

0

a -2

H x x x x

.HM x x x x

ND x x x

N M '1ND-2 U-2 y

'IND-I V- y  0

L Nl i J IL ND.J L

• (54)

HereI is the k x NV identity matrix, b are vectors containing grid point

values of the boundary conditions, x's denote diagonal matrices originating

.: from one-sided difference approximations to the spatial derivative term, and

the y's are band matrices originating from our use of centered space differences

-it i = 2,3 ( 0. 0) and at i - ND-1, ND-2 (, < 0).

/q
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The forward-backward iteration described earlier is now seen to be the

obvious approach to the iterative solution of the above matrix equation.

The above procedure has been programed ano tested on the Cray-i computer

at the National Center for Atmopsheric Research. Due to the predominance of

matrix manipulations the algorithm is ideally suited to the vector processing

capabilities of the Cray-i. In fact, essentially all of the "hard" computa-

tion is performed using assembly-language routines designed to utilize the

vector character of the machine to the fullest possible extent. Results

presented in the following section were obtained using 71 depths, 60 angles

and 256 velocities. For this number of points approximately six minutes of

central processor time is required to setup and solve the matrix equation (54),

using 30 forward-backward passes. Storing the triangular factors of the LA

8matrices requires 2 x (ND-i) * NV * 4 * k * (k + 7) r 1.6 x 10 words of disk

space. High disk-to-central memory data transfer rates are obtained by using

four independent data channels and a double buffering scheme.

The code was tested in three ways: first, it was verified that starting

from a distribution markedly different than Maxwellian, the calculation would

converge to an absolute Maxwellian in an isothermal and isobaric atmosphere

37= () = 0) with Max\wellian boundary conditions. Second, it was verified

that the Spitzer-Hgrm solution could be reproduced in a high pressure atmosphere.

Four coefficient iterations were required to obtain an accuracy of five percent

or better for E < 3.2. Finally, the accuracy of calculation under realistic

conditions was checked by observing the effect of judiciously refining the

mesh. For this purpose a word-packing routine was used to effectively double

the amount of disk storage available. Unfortunately, use of this routine

-proved far too costly for it to be used for other than testing purposes.

q
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As a result of these tests I judge the results presented below to have a

relative accuracy of ten percent or better.

I turn now to the promised discussion of the effectiveness of treating

the quasi-linear collision term by iteration under realistic conditions. Table 2a

is a tabulation, for three coefficient iterations, of the zeroth and first

angular moments of the distribution (cf. 27c), normalized to *, at a location

near the bottom of our standard model (T 27, T0 (T) - 19900K, a(T) - 3.8 x

10-2). The calculation was started from LTE so that the first iterate corre-

sponds to the MFPA. The points to note regarding Table 2a are: a) the largest

0relative change in o between the first and third iterates is less than four per-

cent for all :- < 5.5. b) the same is true for ' for <  5. (&c

-1/4% 1•a-i/ 2.3). and c) i fluxuates widely between iterates at thermal velocities.

On the basis of these and more detailed comparisons, I infer that * at all ,

and the entire distribution function at suprathermal velocities, can

be obtained with good accuracy in the MFPA. What cannot be obtained correctly

in this approximation are quantities which depend sensitively on the pitch

angle distribution of thermal electrons; for example, the heat flux. This is

illustrated by Table (2b) giving the dimensionless heat flux, f 5) d1,

0
for each iteration together with its Spitzer-HRrm value.

I close this section by mentioning two simplifications which have been

useful. First, I evaluate the troublesome inelastic term (24d) iterativelv.

during the course of the forward-backward iteration. Second, I determine the

polarization electric field required for zero current flow using the Spitzer-

Harm (1953) result a - 0.35 a. This value of 8 gives zero mean electron

velocities to well within the accuracy of the calculation.

U'

4 - . " . - " . . • ° • . , - . - " "
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IV. Numerical Results

Results are presented for two model transition regions, one with

14 -3
electron pressure <no T0 > - 6 x 10 cm K -P and the second at P /2

I note that although P0 is the most frequently quoted electron pressure

for the spatially averaged quiet sun TR (e.g., Dupree 1972), different EUV

observations yield pressures which can differ from P0 by at least a factor

of two (Withbroe 1978). Both models span the temperature range 8100 -

2 x 106 K and have a thickness of 5 x 104 km. The distribution function

has been calculated in the HFPA for the boundary conditions (28) using

(ax - 6 and a grid of 256 velocities, 71 depths and 60 angles.

a) Reference Atmosphere

A portion of the reference atmosphere obtained by solving Eq. (20)

with <n T 0 - P is given in Table 3, where , is the thermal mean free

path, q the Spitzer-Hlrm heat flux, and Qrad the radiative losses per unit

volume per unit time calculated from McWhirter et. al's (1975) loss function. Two

points concerning this table should be noted. First, from the near constancy of

qsh above roughly 20,000 K one can infer that radiative losses have a negligible

effect on the temperature profile above this level. Consequently To(Z) for the

P /2 case is very similar to that for P and values of the parameter a areo 0

roughly double those for the P case. Second, relative to empirical models

(e.g., Vernazza et al. 1973, Gouttebroze and Leibacher 1980),

the calculated temperature gradient is probably too steep below 60,000 K,

and is certainly so below 30,000 K. This discrepancy illustrates the known

result (Withbroe 1977, Pneuman and Kopp 1978, Athay 1981) that the empirical

temperature profile of the low TR in either the quiet sun or in active region

loops cannot be understood on the basis of models whose energy budget includes
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only tclassical) thermal conduction and radiation. However, in the present

conte::t this discrepancy is irrelevant because, as mentioned earlier, 7 (z)
L0

serves only to define the relationship between dimensional and dimensionless

variables; the true temperature profile is determined self-consistently

from the Fokker-Planck equation and, in principle, is independent of To(z).

This is not wholly the case here because radiative losses are (incorrectly)

evaluated on the T (z) scale and moreover, are assumed to have the same

functional dependence on temperature as in (electron) LTE.

b) Thermodynamic Quantities

Typical values of the reduced density, temperature, mean velocity,

and the ratio of parallel to perpendicular pressures are listed in Table 4

(see Eqs. 22 a-f). Points of interest are that: a) the Spitzer-HIrm value for

the polarization electric field gives adequately small mean electron velocities

in the XFPA. b) Below it will be seen that the tail of the distribution is

highly anisotropic (Fig. 5). Nevertheless, the ratio P! /P remains within

a fe.'. percent of unity. Whether this remains true when-the calculations are

carried to larger velocities remains to be determined. c) The ratio T/T is
0

seen to be slightly larger than unity in the lower atmosphere. No quantitative

significance should be attached to this temperature rise however, because

the heat flux in the present calculation is inaccurate due to my use of the

MFPA and to truncation of the calculation at max u 6. The latter shortcoming

appears especially serious in light of recent calculations using the Bhatnaghar,

Gross and Krook equation (Shoub 1982; Paper II), which indicate that a substan-

tial part of the energy flux into the low TR is carried by superthermal

electrons with velocities 10-30 times local thermal velocities. Thus, the

correct (kinetic-theoretical) temperature profile of the TR remains to be

'I
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Finally, I note that although the calculated T(z) is inaccurate low

in the atmosphere, this does not imply that the calculated distribution

function (see below) is grossly in error in this region. In all likelihood

it is not, especially at supra thermal velocities, because the tail of the

distribution in the low TR is largely independent of the local temperature

structure.

c) Distribution Function

The isotropic part of the dimensionless distribution function, 4O (E, T 0

dT €(i, d, T), is shown at several heights for the case P - P in Fig. 2,
-1 0

and in more detail in Table 5. The effect on cO of reducing the pressure a

factor of 2 is also illustrated in Table 5. The dimensional distribution f0 (v,T ,)
5_ 3

(no/27 v S) t T ) is shown in Fig. 3 for the case P - P For. comparison ao th 0 o/2*

local-Maxwellian distribution is shown as a dashed line in Figures 2 and 3.

The essential results here are that, relative to a local-Maxwellian,

the tail of the distribution is highly overpopulated and exhibits only a weak

spatial (temperature) dependence throughout the lower TR and chromosphere.

From Table 5 it can be seen that, with respect to normalization, the enhanced

tail is compensated for (approximately) by a suppression of € below € for

1.5 < e < 2.5 For temperatures less than approximately 105K, :* begins to

exceed q at about 4 - 2.5. Higher in the atmosphere *° remains close to
Sout to progressively larger . An analytical characterization of

( , T) is obtained in paper II.

Fig. 4 shows the 1-d'.mensional distribution

f 0ffl
To) " d6 ( - U ) * (, , To)d

.-

at several heights, including the boundaries. Here z A z"
Z- z

Vlaxwellian is again shown as a dashed line for comparison.
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Note the asymmetry between directions parallel ( z>0) and anti-parallel

to 7T. Unfortunately, the structure in z for z>0, evident in Fig. 4 at
z z

T - 19,900 K and 1.05 x 10 K, is artificial--an artifact of my setting0

-0 for > 6 in the above integral for Oz. This procedure is

inaccurate for E z 3 because the pitch angle distribution (Fig. 5, u > 0)
z

is such that for Z > 3, *(, ) decreases slowly with increasing .

Finally, I note that * differs from 0 at thermal velocities, but
z Z

the differences are too small to be noticeable in Fig. 4.

Fig. 5 shows the pitch angle dependence of the distribution for a

sequence of velocities at a location near the bottom of the TR for the case

<n T 0 - P /2. The main features of these plots are the following. At low

velocities deviations from isotropy are small and, moreover, 0 varies linearly

with v, as predicted by classical theory. The flux of low velocity electrons

is directed upward, toward higher temperatures. This upward drift has two

causes; natural (concentration) diffusion due to a negative gradient in the* dinT
dlnf dlnf 25 __ ,_

number of low velocity electrons - - dz and forced

diffusion driven by the polarization electric field. Ezidently, for some

between 1.75 and 2,--- becomes positive and sufficiently large that, in
dz

response, suprathermal electrons diffuse downward against the action of the

field. This effect becomes more pronounced with increasing C, leading to the

strong anisotropy evident in the bottom two panels of Fig. 5. Note that for

> 3, $( .,j ) decreases relatively slowly with increasing for -1 _< io (E),

where u c(Z-3)z .5 and U ( - 4)Z .4, and then decreases more rapidly for

0 (7) < < 1. That the changeover occurs at p 0 > 0, and not atvi- 0,

is due to pitch angle (back) scattering.
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Fig. 6 is a contour plot of the distribution function at a location

near the bottom of the TR for the case P = P . From this plot it is

clear tijat the propagation of electrons down the gradient is diffusive

rather than beam-like,±n character.

d) Effect on Collision Rates

From the standpoint of spectroscopic diagnostics, the main

consequence of having an overpopulated tail on the electron energy

spectrum is that it causes an increase in electron-ion collision rates

and an attendant alteration of an element's ionization balance and,

possibly, its line emission. I illustrate these effects here for magnesium

and for helium, but stress that the results are preliminary due to

shortcomings in both my calculation of the distribution function and

ionization equilibrium (see below).

i) Magnesium

The expression for the collisional ionization rate per ion is

(T)- 41T f v al(V) f°(v) dv

VlK

3 0
S2 nor th f 1C( h )d

l(T)
11

where a1  is the ionization cross section, v l is the electron-threshold velocity, 1

and 1K = Vl /V th The corresponding rate based on a Maxwellian, denoted

C1 , is easily shown to be

C ( n C exp (-E I/T) r(T)
lK 0 1K

V
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whrre C is a constant, EI,, 1/2 m v 2 and

r(T) J (x + E1) °l (EI + xkT) e-x dx

0

is slowly varying. In Table 6 I list C and the ratio C /C for the

first six ionization stages of magnesium. CI, was calculated numerically

using the FP results for *' and the cross section from Allen (1976 P. 41).

There are no entries for C > 5.4 because 0* was calculated only out

to & - 6. The salient aspects of these results are: a) CI/Cl 1

when 1K is below a critical value increasing from roughly 2.0 at T 104 K

to 2.5 at T z 105 K. b) Once &l1C is larger than this critical value

I/CI* ncreases exponentially with decreasing temperature, and c) once
*

C I/C >> 1 at a given temperature, the ratio is then strongly density

dependent. These results simply reflect the behavior of the

calculated distribution function: (a) holds because

0A
Q( ,T ) "( ) for E < Ec and c increases with TO; (b) holds because at

low temperatures the tail of the dimensional, angle-averaged distribution,

and hence Cl., has only a weak spatial dependence (Fig. 3) whereas C decreases

experentiallv with decreasing temperature; (c) simply reflects the density

(or pressure) dependence of the tail, as shown in Table 5.

Figure 7 shows how the enhanced ionization rates affect the ionization

balance of Mg. Processes included in the ionization equlibirium calculation

were collisional ionization and radiative and dielectronic recombination.

The recombination coefficients were taken from Aldrovandi and Pequignot (1973).
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The essential features of Fig. 7 are that: a) ionization stages normally found in

the upper and middle TR remain unaffected (see below). b) The temperature range ovi

which lower ionization stages exist is generally broadened (on the low

temperature side) and, in some instances, shifted to lower temperatures, and

c) a density dependence is introduced into the ionization equilibrium.

Clearly, electron non-LTE effects significantly alter magnesium's

ionization equilibrium. Qualitatively similar results have been

found for C, N, 0, Si, S, but it is felt premature to present extensive

ionization equilibrium data until deficiencies in the present

calculation are remedied. Four deficiencies in particular may alter

the results shown in Fig. 7. First, the fact that the calculated tempera-

ture profile is too steep at low temperatures implies that (Pdeparts from

0 at lower values of than is perhaps realistic. This leads to

an overestimate of ionization rates for low ionization states. Second, ionization

rates of higher ionization stages have been underestimated at low temperatures

because in calculating the ionization rates I set

ionization an: rate for which i exceeded 5.4 equal t6 zero.

This turns out to be a poor approximation because the tail extends to many

10's of ther..al velocities in the low TR. Third, I have not attempted to

account for effects of the nonthermal electron energy spectrum on dielectronic

recombination rates. However, because this process involves inelastic electron-

ion collisions and, moreover, favors collisions with large excitation energy

(e.g., Mihalas 1978), I suspectits rate will be significantly enhanced at

temperatures below, say, 3 x 105 K. If it turns out that the rate of dielectronic

recombination exceeds that of radiative recombination in the low TR, the ionization

balance mtay be significantly different than shown in Fig. 7. Fourth, I note that

provided the effect just mentioned does not qualitatively change present results, it

is l --l;: t!-: at low temperatures the situation will be one in which neutral
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hydrogen and helium coexist with multiply-charged trace elements. In this case

charge transfer recombination of trace ions in collisions with atomic hydrogen

and helium (Butler and Dalgarno 1980) may play an important role in the

ionization balance.

From the above discussion it is apparent that a considerable amount of

work remains to be done before reliable ionization equilibrium results are

available.

Now consider the question of whether a non-thermal electron energy

spectrum will cause enhanced emission in a given speztral line. Several

cases can be distinguished. (i) If the fractional abundance curve of the

relevant ion has not been broadened or shifted to lower temperature

(e.g., Mg VI in Fig. 7), then enhanced emission is not

expected. This is because an unaltered abundance curve implies C * C11

over the temperature range in which the ion is abundant and, since E2 < EI1

and departures from a Maxwellian spectrum increase monotonically with energy,
*

this implies C!2  C12 over the same temperature range. (ii) If the ion's

abundance curve has been shifted (e.g., Mg IV), and if E12 is comparable

to El., then emission will be enhanced because a) emission occurs over

a broader, more dense region than in LTE and b) because C12 is likely to
,12

exceed C over this range. Thus, resonance lines of hydrogen and
12

helium (see below) are likely candidates to show enhanced emission.

S(iii) Finally, if the relevant abundance curve has been altered but E

is small compared to El., then although enhanced emission will probably

still occur due to density and range effects, the relative enhancement

will be less than in case (ii) because C12 will be close to C over the
12 12

region of formation.

The above remarks are clearly qualitative; detailed calculations

are required if one is to draw reliable conclusions.
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ii) Helium

The quiet sun XUV spectra of helium has evoked much interest in

recent years (see Mango et al 1978 for a review), mainly because it is

poorly understood. The central issue has been to identify the mechanisms

responsible for ionizing Hel and Hell at low temperatures (Athay 1975, p. 298) and

for enhancing resonance line intensities considerably in excess of that

predicted by standard collisional excitation. Although it is now belived

that a photoionization-radiative recombination mechanism is responsible for

formation of the resonance continua of both HeI and Hell (Mango et al),

the exciting mechanism for the HeI X584 and Hell X304 lines remains ambiguous.

In 1975 Jordan suggested that what was needed was a method of mixing under-

:V ionized helium with hotter electrons, thereby enhancing the line emission.

Subsequently, Shine et al (1975) reported calculations which indicated diffusion

of helium up the temperature gradient was one means of achieving such

mixing. I show here that diffusion of fast electrons down the temperature

gradient is a second.

In Table 7 I list ionization rate ratios, C I/C for HeI and HeII

and excitation rate ratios for the Hel X584 and HelI X304 transitions. Both

actual and LTE rates were calculated numerically using cross sections from

Mihalas and Stone (1968). Note that the HeII rates are considerably enhanced

W even at 45,800 K, well above the temperature at which we expect thermalization

to occur in a more realistic chromosphere model.

Proper assessment of how the collision rate enhancements indicated

above affect helium's ionization balance and line emission requires radiative

transfer calculations beyond the scope of this paper (see: Avrett et al 1976;

Milkey et a! 1973). The following qualitative observations may be noted

hotwever. First, it appears that helium's ionization balance will in fact be

altered by the effects in question, for the enhanced collisional ionization
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rates are comparable to the nominal photoionization rates for HeI and HeuI

quoted by Avrett et al. throughout the temperature range of interest.

Second, the observed brightening of the helium resonance lines (and other

EUV emission lines) in going from cell interior to network region can be

understoo4, at least partially, in terms of the sun's large-scale magnetic

field structure; i.e., the predominantly horizontal field in cell interiors

impedes vertical diffusion of electrons. Third, the observed decrease in

brightness of the helium resonance lines in coronal holes--which is more

pronounced than for other ions (Jordan 1975, Bohlin 1977)--and their relative

brightening in active regions can be understood in terms of i) their relatively

large ratio of excitation to ionization energy, and ii) differences in

physical conditions in these regions. i) implies the lines

have large values of E 12/kT in their region of formation and hence are

particularly sensitive to a non-thermal electron energy spectrum.

Regarding ii) I note that a useful parameter for assessing the like-

lihood of non-Maxwellian effects is collisional depth TL separating high and low

temperature regions. For an isobaric slab of thickness L, electron pressure P,

Lemaximum and minimum temperatures Th and Tc, and possessing a conduction

temperature profile (i.e., T7 /2 linear in height), I find that
L

'r f dz- ,7L 77re~ n 1<6lnT>)
S - X) X(Th) kTh)' - ,

hT -T

where I have assumed Th >> T so that <A ln T> z h - 1. Coronal holes
h c T h

are thought to be cool, low-density regions with relatively weak temperature

gradients, whereas active regions are hot, dense regions with steep gradients.

Thus, T most likely increases, and non-thermal effects therefore decrease,
L

in going from active regions to holes. Fourth, and perhaps most interestingly,

I note that in addition to its potential ability to account for the observed

emission in the .584 and X,304 resonance lines, the present theory helps

explain a puzzling aspect of the helium npectrum, namely the large observed
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values of the Lyman series intensity ratios for Hell;

I(n - 1; n > 3)/1(2 - 1). As no ttd by Zirin (1975), it is difficult to

explain the observed intensity ratios via collisional excitation by

electrons with a Maxwellian energy spectrum, because in this case the ratios scale

exp (-&E/kT), where AE is the difference in excitation energy and T is

the (assumed common) temperature at which the lines are formed. On the

other hand, photoionization of He Il followed by recombination to excited

states with subsequent radiative decay to ground gives line ratios in

much better agreement with the data (Zirin). But excitation via this latter

mechanism implies He II resonance lines are formed near optical depth unity

in the He II continuumand hence at large line-center optical depths. If this were

actually the case, however, the emergent line profiles should exhibit

* a central self-reversal (Milkey 1975), and they do not. Instead they are

observed to be simple Gaussians, thereby indicating an excitation mechanism

operative at small line-center optical depths.

The above dilemma can potentially be resolved by allowing for

*collisional excitation by electrons with an energy spectrum which is softer

than exponentia], such as those calculated here. It is-hoped to pursue

this and other aspects of the helium problem in a later publication.

"9

w

..
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V. Discussion

a) Implications for Transition-Region Physics

There are several outstanding questions concering the low TR

A ° (T < 3 x 105 K), other than those related to the helium spectrum

discussed in § IV, for which electron non-LTE effects hold implications.

Among these are the following.

i) Energy Balance

Energy balance in the low TR is widely considered to

be problematic (e.g., Athay 1981, Alvarez 1980, Pallavicini et al.

1981, Chiuderi and Riani 1974). Broadly stated, the problem is

that empirical temperature profiles are inconsistent with known

energy-transfer mechanisms, while temperature profiles derived

from energy-balance arguments fail to reproduce the observations.

The shortcomings of classical conduction-radiation models

are especially interesting because the empirically inferred conductive

flux at the top of the quiet-Sun TR of approximately 5 x 105 ergs/cm -sec

is sufficient to balance radiative losses from the transition

region and upper chromosphere (Athay 1981). There are two difficulties. On

d-e one hand, semi-empirical analysis of EUV line intensity data

(e.g., Athay 1966, Dupree 1972, Kopp 1972: see also Withbroe 1977)

suggests that transition-region temperature gradients are roughly

consistent with constant conductive flux for 105 K !5 T< 106 K, but

decrease sharply immediately below 105 K. Since the classical

heat flux is proportional to T 2  a decrease in dTdz- ' eraei -implies a

large conductive energy input to this material near 105 K.

As recognized by Kuperus and Athay (1967) and others, however, plasma of

5
solar composition at 10 K and transition-region pressures cannot

[w
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radiate sufficiently rapidty to dispope of the incoming energy,

so that mass motion should result. Moreover, as a result

5
of this energy deposition near 10 K, there is an insufficient

conductive energy flux into the upper chromosphere, where the bulk of

the radiative loss actually occurs. Thus, in order to reconcile

the empirical temperature profile with energy balance one requires

an energy sink near 105 K and an energy source at lower temperatures

(Athay 1981).

On the other hand, although they permit conductive energy

in amount sufficient to balance radiative losses to reach the

upper chromosphere, (classical) conduction-radiation models also

prove incompatible with energy balance. This is because at upper

• .chromospheric temperatures the temperature gradient required to

4
carry the conductiveflux is so large (e.g., at 3 x 10 K,

k 'I z = 0.1 Km if q - 5 x 105 ergs/cm -sec) that there is
\dzi/ cond

insufficient material in the required temperature range to produce

the observed radiation. This effect was encountered in § III of

this paper, when establishing the reference temperature scale T (z).
0

The above difficulties have led to consideration of

alternatives to one-dimensional, static, conduction-radiation models.

However, neither alteration of the geometry (Gabriel 1976), nor

consideration of enthalpy transport by steady flows (Pneuman and
W
-:- Kopp 1978, Chiuderi and Riani 1974) have significantly changed the

situation; to account for the observations one still requires an

, energy sink near 105 K and an energy source at lower temperatures.
'V
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Now consider the possibilities suggested by results

reported here and by more recent calculations (Paper II). First,

it is plausible that rise in the empirical differential emission

measure near 105 K is due to electron non-LTE effects on ionization

equilibria and line emission, as illustrated in Fig. 7 for magnesium

and discussed in detail in S IV. Lines which in (electron) LTE are

5formed over a relatively narrow temperature range near 10 K are

perhaps actually formed over a significantly broader, lower temperature,

and hence higher density range, with correspondingly enhanced

emission. If so, there need not be a sharp decline in the temperature

gradient immediately below 105 K, thus obviating the need for an energy sink

in this region. This view is supported by the observational evidence dis-

cussed below. Second, based on recent calculacions using the Bhatnagar,

Gross and Krook equation (Paper II), I suggest that the conductive

energy flux into the upper chromosphere is carried by suprathermal electrons

with velocities extending to 10-30 times local thermal velocities. Since

energy deposition by suprathermal electrons is due primarily to

Coulou.b collisions with background electrons, energy deposition

per unit pathlength is largely independent of the local temperature

structure. Conductive energy transfer via this mechanism might

therefore overcome the small scalelength problems inherent to

classical conduction.

To summarize, I suggest that it may be possible to

construct kinetic conduction-radiation models of the TR which are

consistent with the observations and with energy balance. To do

so requires that conduction and radiation be calculated, and observa-

tions interpreted,with proper allowance for electron non-LTE effects.

I.



60

Within the context this paper this is, of course, only a conjecture;

detailed calculations are required in order to reach firm conclusions.

Moreover, if this is to be the case, the role of energy

transport by mass motion remains to be clarified (Athay and Holzer 1982).

Nonetheless, the preliminary results reported here, the simplicity

and economy of the underlying ideas and the observational evidence

discussed below lend some weight to the stated conjectures.

ii) The Schmahl and Orrall (1979) Observation

The above authors have reported evidence for strong

continuum absorption of EUV line photons with wavelengths shortward

of 912 " everywhere on the Sun's disk. The lines involved had

4.8 < log T < 5.6, where T is the temperature at which the.8_loTmax _ max

standard line contribution function is maximum. As discussed by

Schmahl and Orrall, two possible explanations are i) that due to the

inhomogeneous nature of the atmosphere there is a large amount of

cool, neutral-hydrogen-containing material overlying the EUV-emitting

regions (most likely in their opinion), or ii) that there may be a

significant amount of neutral hydrogen (and helium) distributed more

or less uniformly with the EUV-emitting ions.

I note that provided the additional effects discussed in

§ IVd do not qualitatively change the ionization balance, the second

of the above alternativesis what one would expect on the basis of the ideas

U discussed in this paper. Ionic stages which in electron LTE exist only at

relatively high temperatures (2-3 x 10 K), may actually have significant

populations throughout the upper chromosphere where there is a non-

negligible concentration of neutral hydrogen.

q
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What speaks against this intepretation is that the absorption appears

to be as pronounced in cell interiors as in network regions. However, the

magnetic field configuration in both network and cell interior regions

is perhaps too uncertain for this objection to be decisive.

iii) Temperature Plateaus

Empirical, one-dimensional models of the upper chromosphere

require substantial amounts of material at temperatures near 20,000 K

in order to account for the observed resonance line and continuum

spectrum of hydrogen (Vernazza et al. 1976, 1980, Basri et al. 1979,

Gouttebroze et al. 1979). Although the existence of such plateaus can

plausibly be attributed to inhomogeneities in the solar atmosphere, within

the context of one-dimensional models they are problematic in two

respects (Avrett 1981). First, it is difficult, from an energy-balance stand-

point, to identify processes responsible for their formation, and

second, spectrum synthesis for elements other than hydrogen often

require plateaus with disparate properties. For example, Lites et al.

(1978) find that their best fit to center-to-limb measurements of C.II

resonance lines at 133.5 nm, as well as hydrogen Ly-a and Lyman

continuum intensities requires a plateau at 16,500 K with about 25%

more material than the one at 20,000 K required by Vernazza et al.

(1976) based on hydrogen data alone (see Vernazza et al. 1981).

Loulergue and Nussbaumer (1976) note that the observed

X977 and X1176 emission from C III can be explained by a plateau at
010 -3

30,000 K with an electron density n - 10 cm and a thickness of 800 km

along the line of sight. This is especially noteworthy in the presentK context because standard calculations (Jordan 1969) indicate that C III

I-
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has its maximum abundance near 60,000 K. Finally, Feldman, Doschek and

Patterson (1976) find that X1207 emission from Si III is compatible with

a plateau at 36,000 K with thickness 840 km in cell boundary regions and

380 km in cell interiors.

I suggest that the plateaus just mentioned are perhaps artifacts

of the LTE assumption; i.e., they are required in present empirical

models in order to compensate for underestimating collisional excitation

and ionization rates.

iv) Non-local Thermodynamics

It follows from results shown in 9 IV that the detailed

- shape of the electron distribution function in the low TR is dependent on

the global temperature and density structure of the overlying atmosphere.

An implication of this is that the ionization equilibrium of the elements,

optically thin radiative losses and energy transport by thermal conduction

acquire a dependence on the global structure of the upper TR and corona.

This siutation is in sharp contrast to that which attains in electron-LTE,

.here each of the above processes is a function of the-local thermodynamic

variables and perhaps their gradients. Clearly, breakdown of the local

:axwellian approximation in the solar TR-and by implication in the transition

W regions of other stars--leads to a significant increase in the level

of complexity required for successful spectroscopic diagnostic work or

theoretical modeling.

V If future calculations give fractional abundance curves similar

to the preliminary results for magnesium shown in Fig. 7, two added

complications which may then arise are the necessity of considering charge

V~ tran~sfer rtcombination reactions in the ionization balance and finite

V
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optical-depth effects in resonance lines which are optically thin according

to standard ionization equilibrium calculations.

Finally, I note that because the calculated

electron energy spectrum has a relatively

weak temperature (spatial) dependence in the low TR (Fig. 3), ionization

nonequilibrium effects due to flows through this region (Joselyn et al.

1978, Raymond and Dupree 1978) may be less significant than presently

thought.

v) Other Effects

The most straightforward test of the ideas discussed here lies

* in comparison of predicted and observed EUV emission-line profiles and

intensities. However, there are two additional effects associated with

a nonthermal electron spectrum which may be observable.

As mentioned in § II, it is well known that electron distributions

of the sort calcilated here imply an enhanced level of electron density

fluctuations at frequencies near the local plasma frequency. (If the

electron temperature extqeeds the ion temperature, ion density fluctuations

will also be excited.) In addition to their ability to scatter fast

electrons (Tidman and Eviatar 1965)--an effect which should be included

in future calculations--Tidnan and Dupree (1965) and others have shown that

such density fluctuations also lead to a significant collective contribution

to the bremsstrahlung emission at the local plasma frequency and its first

* harmonic. For the TR the relevant frequency range is roughly .1 to 10 GHz.

I find that for a model atmosphere consisting in an isobaric, constanti4 6 014 -3

conductive flux TR (10 < T < 2 x 106 K, NeTe - 6 x 10 cm , q - 6 x 105

q ergs c- sec ), together with an isothermal, hydrostatic corona

i
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6(T cor = 2 x 10 K), the optical depth is less than uniry for frequencies

v > 7 GHz and .3 GHz for w and 2-w emission, respectively. Although
p p

these numbers are quite model dependent, they indicace that it may be

possible to observe enhanced w and 2-w radiation from the TR.
p p

Henoux et al. (1982) have observed linear polarization in the

chromospheric S I 1437A line during the soft x-ray phase of a flare. The

measured direction of polarization suggests that collisional excitation

by an anisotropic electron distribution, such as those expected in a

plasma carrying a heat flux, is the mechanism responsible for producing

the polarization. If higher temperature lines suitable for polarization

measurements could be identified, and measurements made, they might provide

a valuable constraint on future calculations of the electron distribution

function.

b) Previous Work

Spicer (1978) has noted that the large heat flux inferred

from empirical models of the solar TR imply a return current electric

field which is of the order of the Dreicer field. Ho suggests that as

a result there occurs a "boiling off" of electrons in the tail of the

electron distribution and that these electrons represent a non-negligible

fraction of the total energy input to the corona.

This idea is incorrect. Present results show that in a

temperature gradient fast electrons diffuse down the gradient against

the action of the electric field. Spicer's error lies in

accepting conventional ideas concerning electron runaway in a homogeneous

plasma immersed in a dc electric field (Dreicer 1959). Reference to Eq. 41

shows that,in an inhomogeneous plasmagradient-related terms dominate
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electric field terms by a factor of v )2 in the kinetic equation. The
Vth

latter are, therefore, unimportant at suprathermal velocities.

Pursuing ideas (Shoub 1976) made available to him, Roussel-Dupre (1980

has examined the effect of an electron distribution function possessing a

nonthermal tail on heat conduction and on the ionization equilibrium of several

elements. Because there is no physical basis for his choice of distribution

function, however, meaningful conclusions cannot be drawn from his analysis.

Gurevich and Istomin (1979) have attempted a perturbation analysis

of the linearized, high velocity form of the Fokker-Planck equation, treating

a = d nT as a small parameter. Because they resort to quite severe
dz max

idealizations (e.g., infinitely steep temperature gradients),

their results appear to be only of qualitative

significance. Nevertheless, they do point out classical heat conduction

results are likely to be invalid for quite small values of a.

c) Sumary

In the foregoing I have shown that the fundamental assumption that in a

weakly inhomogeneous plasma free electrons maintain nearly a local-Maxwellian

velocity distribution function is invalid throughout the solar transition

region and upper chromosphere. I have examined several implications of

the breakdown of this assumption and have suggested that a number of out-

standing puzzles related to the low transition region--including energy

balance, the anomalous resonance line spectrum of He I and He II, the

anomalous continuum absorption by neutral hydrogen and the seeming need

for plateaus in empirical one-dimensional temperature profiles of the

upper chromosphere--are potentially resolvable by abandoning the electron-LTE

hypothesis. In addition, I have identified several phenomena--non-local
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heat conduction, enhanced electron-ion excitation, ionization and

dielectronic recombination rates, charge transfer recombination on

neutral hydrogen and helium and possible plasma collective effects--

which may play a role in future development of this subject. These

advances were made possible by development of an effective numerical

algorithm for solving kinetic equations of the Fokker-Planck type.

U
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Table 1.

Empirically Derived, Homogeneous Quiet-Sun Transition Region Model
a

dT 1

z log T0  no dz A

OK ~-3 O/mK
Km cm KIKm Km

2006 4.8 9.5(9) 4.3(3) 3.3(-2) 2.2(-3) 4.6

2011 5.0 6.0(9) 1.1(4) 1.2(-l) 1.3(-2) 2.9

2016 5.2 3.8(9) 1.1(4) 4.6(-1) 3.2(-2) 2.4

2031 5.4 2.4(9) 3.6(3) 1.7 2.4(-2) 2.5

2512 5.8 9.5(8) 1.1(2) 26.4 4.6(-3) 3.8

a
A. K. Dupree (1972)

b NOTE - 'umbers in parenthesis denote multiplicative powers of 10.
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Table 2a.

First Two Angular Moments of the Distribution Function for Three Coefficient
Iterations for the Case P - P at a Location Where

T= 27, To - 19,900K, a - 3.8 x i0-2

teration o(E, T)/,()a 1(E, TI

\N.1 2 3 1 2 3

0.5 1.00 .992 .985 7.35 (-3) 1.09 (-2) 1.30 (-2)

1.0 1.00 1.00 1.00 2.31 (-2) 3.50 (-2) 4.24 (-2)

1.5 .999 1.00 1.01 2.56 (-2) 4.00 (-2) 5.18 (-2)

2.0 .975 .973 .978 -4.13 (-2) 3.73 (-2) -2.36 (-2)

V 2.5 .986 .988 .988 -3.02 (-2) -3.15 (-2) -3.01 (-2)

3.0 1.73 1.79 1.78 -1.13 -1.18 -1.16

4.0 1.08 (2) 1.15 (2) 1.13 (2) -8.94 (1) -9.43 (1) -9.25 (1)

5.0 1.40 (5) 1.47 (5) 1.44 (5) -1.21 (5) -1.27 (5) -1.25 (5)

a o 1
1/2 T(i, I, I ) d.; H 3/2 f (U, , r) du

First iterate corresponds to MFPA.

[__! _
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Table 2b.

Calculated Dimensionless Heat Flux for Three Coefficient Iterations
At Same Location as in Table 2a

Iterationa q

S1 -1.04(-1)
2 -9.46(-2)
3 -7.47(-2)

First iterate corresponds to MFPA.

-1 0

bq f u dlf 50 U
-l 0

c Spitzer-RUrm value for q is -8.06(-2)

VW

V

S'

V
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Table 3.
Regon ode. <o~o- 6x 1-14 Kc-3

Portion of Calculated Transition Region Model. 0 0 > 6 x 10 K cm

a bdlog 1 0 To0 Qraj qsHb
Height To dz erg era7

cm T o cm a cm- 1  (cm3-sec) (cm.-sec)

0.0 0.0 8.1 (3) 9.7 2.3 (-2) 2.4 (-3) 2.1 (2) -2.01 (5)
• A

2.1 (2) 1.4 (1) 1.1 (4) 2.4 (1) 4.1 (-2) 1.7 (-3) 8.4 (0) -4.20 (5)

1.1 (3) 2.8 (1) 2.0 (4) 1.2 (2) 3.7 (-2) 3.1 (-4) 1.7 (-1) -5.12 (5)

4.6 (3) 4.1 (1) 3.2 (4) 4.5 (2) 3.0 (-2) 6.6 (-5) 2.9 (-2) -5.12 (5)

1.6 (4) 5.5 (1) 4.6 (4) 1.3 (3) 2.5 (-2) 1.9 (-5) 1.4 (-2) -5.12 (5)

4.6 (4) 6.9 (1) 6.3 (4) 3.2 (3) 2.1 (-2) 6.6 (-6) 1.7 (-2) -5.13 (5)

1.7 (5) 9.0 (1) 9.3 (4) 1.0 (4) 1.7 (-2) 1.7 (-6) 9.8 (-3) -5.14 (5)

3.8 (5) 1.0 (2) 1.2 (5) 1.9 (4) 1.6 (-2) 8.1 (-7) 6.1 (-3) -5.16 (5)

1.0 (6) 1.2 (2) 1.6 (5) 4.5 (4) 1.4 (-2) 3.0 (-7) 3.4 (-3) -5.18 (5)

4.1 (6) 1.6 (2) 2.4 (5) 1.5 (5) 1.1 (-2) 7.3 (-8) 1.4 (-3) -5.24 (5)

1.7 (7) 2.0 (2) 3.6 (5) 5.0 (5) 9.1 (-3) 1.8 (-8) 3.7 (-4) -5.33 (5)

1.4 (8) 2.8 (2) 6.9 (5) 3.3 (6) 6.8 (-3) 2.1 (-9) 4.7 (-5) -5.45 (5)

1.6 (9) 4.1 (2) 1.5 (6) 2.6 (7) 4.9 (-3) 1.9 (-10) -8.9 (-6) -5.69 (5)

5.9 (9) 4.8 (2) 2.0 (6) 7.1 (7) 4.3 (-3) 6.9 (-11) 2.6 (-6) -5.83 (5)

a
Qrad is the radiative loss per unit volume

b q is the Spirzer-Hgrm heat flux.

V
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Table 4.

Kinetic Theory Values of Reduced Thermodynamic Variables

Pu,/ Pil/
To(*K) n/n T/T < >  To(OK) n/no T/To < z > P

0 0 0 Z J 0 0I

pp P -P /2

1.12(4) 1.011 1.008 -0.002 1.016 1.12(4) 1.020 1.026 0.004 1.027

3.15(4) 1.006 0.999 -0.002 1.006 3.23(4) 1.012 1.007 -0.002 1.015

6.27(4) 1.004 0.999 -0.002 1.003 6.55(4) 1.009 1.002 -0.003 1.010

1.17(5) 1.003 0.999 -0.001 1.003 1.10(5) 1.007 1.000 -0.002 1.007

2.39(5) 1.002 0.998 -0.001 1.003 2.35(5) 1.005 0.999 -0.002 1.004

6.93(5) 1.001 0.999 -0.001 1.001 6.90(5) 1.003 0.998 -0.001 1.002

U

Kq
p.!
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Table 5.

Normalized Isotropic Component of Distribution Function
€° (& ,T o )  € 0 W

4 4 55
T - 1.5 X 104K T -3.1 X 104K T - 1.57 X 10K T - 6.92 X 105K

Po Po/2 Po Po/2 Po Po/2 Po Po/2

0.00 0.99 0.98 0.99 0.98 1.00 1.00 1.00 1.00

0.28 0.99 0.98 1.00 0.98 1.00 1.00 1.00 1.00

0.57 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00

0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 1.41 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.70 0.99 0.98 1.00 0.98 1.00 1.00 1.00 1.00

1.98 0.98 0.94 0.99 0.94 1.00 0.98 1.00 1.00

2.26 0.97 0.92 0.98 0.92 1.00 0.97 1.00 0.99

2.54 1.02 1.08 1.00 1.08 1.00 0.99 1.00 0.99

2.82 1.3 1.8 1.2 1.8 1.03 1.2 1.01 1.03

3.10 2.4 4.1 1.8 4.1 1.21 1.8 - 1.04 1.2

3.39 6.1 1.5(1) 4.0 1.3(1) 1.8 3.9 1.2 1.8

3.67 2.1(1) 6.1(1) 1.2(1) 3.4(1) 3.74 1.2(1) 1.6 3.9

* 3.95 9.3(1) 3.2(2) 5.0(1) 1.6(2) 1.1(1) 4.9(1) 3.1 1.1(1)

4.24 5.2(2) 2.0(3) 2.6(1) 9.5(2) 4.5(1) 2.5(2) 8.0 4.4(1)

4.52 3.6(3) 1.6(4) 1.7(3) 6.9(3) 2.4(2) 1.6(3) 2.9(1) 2.2(2)

4.80 3.0(4) 1.5(5) 1.4(4) 6.1(4) 1.6(3) 1.3(4) 1.4(2) 1.3(3)

5.08 3.1(5) 1.6(6) 1.3(5) 6.5(5) 1.4(4) 1.3(5) 8.8(2) 9.8(3)

5.36 3.8(6) 2.2(7) 1.6(6) 8.3(6) 1.5(5) 1.6(6) 6.8(3) 8.2(4)

5.65 5.7(7) 3.5(8) 2.3(7) 1.3(8) 1.9(6) 2.2(7) 6.3(4) 7.8(5)

5.93 1.0(9) 4.6(9) 3.9(8) 2.3(9) 3.0(7) 3.8(8) 6.3(5) 8.2(6)

___i___i_________ t 6



141

417

IV 4p - -

N~ ~ 0 0

4d a C S 0 - 0 a

-r 0: -Ct

41 - - N - - -

02I i i 9 C

aup



78

Table 7.

Ratio of Calculated to Maxwellian Collision Rates For Helium

C1K (HeI) C1K (HeII) C12 (X584) C12 (304)

1K lK 12 12

P P /2 P P /2 P P /2 P P /2
0 0 0 0 0 0 0 0

1,200 3.8(6) 1.5(7) - 1.3(6) 5.2(6) --

5,000 1.4(4) 5.7(4) 8.4(3) 3.6(4) 3.1(8) 1.6(9)

9,900 2.2(2) 7.4(2) 2.5(8) 1.1(9) 2.0(2) 6.7(2) 5.7(5) 2.2(6)

5,400 1.8(l) 4.9(1) 1.4(6) 5.0(6) 1.8(1) 5.3(1) 6.1(3) 2.0(4)

11,500 3.9 8.8 2.1(4) 6.6(4) 4.3 1.0(1) 2.6(2) 7.8(2)

18,300 1.7 3.0 8.7(2) 2.7(3) 1.9 3.5 2.9(1) 8.0(2)

5,800 1.2 1.6 8.5(1) 2.5(2) 1.3 1.8 6.5 1.6(1)

i3,900 1.1 1.2 1.6(1) 4.3(1) 1.1 1.3 2.6 5.1

i2,700 1.0 1.1 5.0 1.2(1) 1.1 1.2 1.5 2.4

;2,100 1.0 1.1 2.4 4.6 1.0 1.1 1.26

2,300 1.0 1.0 1.5 2.4 1.0 1.0 1.1 1.2

?3,100 1.0 1.0 1.2 1.6 1.0 1.0- 1.0 1.1

).4,600 1.0 1.0 1.1 1.3 1.0 1.0 1.0 1.1
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Figure Captions

Figure 1. A plot of the pitch angle dependence of the reduced distribution

function at a fixed velocity and location, illustrating the conver-

gence properties of the iterative scheme discussed in the text.

Curves arc labeled by iteration number. Thus, curve "0" is the initial

estimate, curve "1" is the result of the first forward (U>O) integra-

tion, curve "2" is the result of the first backward (u<) integration,

etc.

Figure 2. Isotropic part of the reduced distribution function versus dimension-

less energy at several heights for P O' Abscisaa;
M2 1

O2kTo(Z) . ordinate; o ( T) 1/2 (, E, T) dij. Solid

liies are calculated results. Dashed line is a local Maxwellian.

Solid curves are labeled with the value of T0 at the corresponding

height.

Figure 3. Isotropic part of the dimensional distribution function versus velocity

measured in units of 108 cm/sec for the case P = P0 12. Dashed lines are

local-Maxwellian distributions; solid lines are calculated results.

Figure !. One-dimensional reduced distribution function of electron velocities

along the gradient direction at several heights, including upper and

lower boundaries. z is positive in the direction of increasing

tcmperature. Solid lines represent calculated results. Dashed lines

are local Maxwellians.

Figure 5. Nornmalized pitch angle dependence of the distribution function for a

sequence of velocities at a location near the bottoni of the slab

(T, - 47,500K). u is the positive in the direction of increasitg temper-

ature. Note ordinate scale changes between panels.



Figure 6. Contour plot of the reduced distribution function for P - P and at-71 0

the same location as in Fig. 5. E- i Lhe component of the dimen-

sionless velocity along the gradient direction and is positive in the

diractiun oZ increasing temperature.

Figure 7. Normalized pitch angle dependence of the distribution function at the

lower boundary. The boundary condition is j Ci, , r 0) - C* ( )

for U>0.

Figure 8. Fractional relative abundance of the first six ionization stages of

magnesium versus temperature for P P and P 2. Solid lines are
0 0/.

for calculated collision rates. Dashed lines are for Maxwellian rates.

1PU
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Appendix

Here I give heuristic arguments supporting the step-size estimates (49a,b).

Consider first the case of explicit differencing. In their book Richtmyer

and Morton (1968, p. 207) use a standard Von Neumann stability analysis to show,

under the condition that the coefficients be slowly varying, that if Eq. (47)

is differenced using a forward (explicit) time difference and centered, second-

order space differences, the stability condition is

t ('Lx ) (A- Y (I

This is a local condition in that it must be satisfied for all x, y in the

region of interest.

Disregarding the fact that the coefficients in Eq. 45 are not slowly

varying, the analogous condition for stability (,t an explicit differencing scheme

for that equation (using centered second-order u and &-differences) is

(* )2 +  C- IA2)

2 -3
From Eq. (43) we see th t in the MFPA, A - 2 and C 3 as 0 - O. Since

3 v"

the smallest values of o and E on the mesh are - and A, (A2) implies
2

z 0 ( J) ,.)2 I  (A3)

which is (49a) of the text. Due to the rapid variation of the coefficients, (A3)

is most probably incorrect as a rigorous stability criterion. Nevertheless,

W

[-
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it is probably not very wrong and thus indicates that the singular nature of the

coefficients in the Fokker-Planck equation near E - 0 leads to excessively small

step sized restrictions for explicit spatial differencing schemes.

Now consider application of ADI-differencing (Richtmyer and Morton, p. 211)

to Eq. (48b) in the MFPA, so that by (39b) the mixed-derivative term is absent.

In this case (48b) can be written

++
-TU W (L +1.) 1. (T) + q (r) (A4)

DT ME nil

where for E 0 0, max L and L are difference-matrix representations of the

operators - a 2 + [d* + (- - 8)] 3Z + P* + 5 U and

c + [e* + 8 M respectively. The vector q denotes the

term N€ in (48b) and is considered known. Elements of L and L for E - 0,&

correspond to the difference form of the side conditions (44) and (42) respec-

tively. Using the notation 0 -.(iLT) and omitting the + superscript from 0+

the ADI scheme for (A4) may be written

;i+ 2. . i+1/2 i i
T7 L t, +1 L-:12-- - 4- -

(A5)

i+1 -i+1/2 i+1/2 i+1 i+1

L-r i +i/2i+q/2

Upon eliminating i+1/2 I find that

q i+1 i i i+1d-1 . " (L +  ) I - +-i+ + + -
2 ~ 2

(A6)

(Lt)2L L) (i+i )_
4 VK ru A~T

U
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I observe that the first two bracketed terms on the right side of (A6) are

the result for a fully implicit (hereafter FI) step, centered at i + 1/2. The

last term on the right in (A6) is thus ;iL I - In usual applications

of the ADI method (slowly varying coefficients) this difference is of order

(LT) 2 , and is acceptably small because the truncation error of the FI step is

2
itself of order (T) . In our case, however, this term is large at small

* velocities.

To see this we make use of the fact that for conditions of interest the

computed solution is close to the (1953) Spitzer-H~rm solution at small

velocities; i.e.,

( . T G T + 211 a (T)

where

1 () = DT ( ) _ 0.35 DE

and DT and DE are the functions tabulated by Spitzer & Hgrm. I find that

1() - 0 (- 4) as 0 where 0<6<<1. Using the definitions given above

for the operators L and L, I now find that

0 d_ (A7)

da 2* a

Since = 0(02), the requirement that L - F << s for all u,E leads,

with help of (A6) and (A7), to the condition that

[ ( 311/2
agT : 0 [ U

which is (49b) of the text.

U

• q '
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